a2 United States Patent

US009280479B1

(10) Patent No.: US 9,280,479 B1

Kruckemyer et al. 45) Date of Patent: *Mar. 8, 2016
(54) MULTI-LEVEL STORE MERGING IN A 2012%315127,252 221 : éggg ganrﬁon et :11' ~~~~~~~~~~~~~~~~ ;H; ﬁ;
ypher et al. ..
CACHE AND MEMORY HIERARCHY 2013/0191651 Al* 7/2013 Muffetal. ..o 713/193
(75) Inventors: David A. Kruckemyer, San Jose, CA OTHER PUBLICATIONS
(US); John Gregory Favor, Scotts Prvalovic ef al. “The Solit Spatial/Non-Soatial Cache: A Perf
. Trvulovic et al., € SplI patL on->patt ache: erior-
\B7allley, CA&EAEJS[}’SMattheW W. Ashcraft, mance and Complexity Evaluation”, in Newsletter of Technical
elmont, (Us) Committee on Computer Architecture, IEEE Computer Society, Jul.
. 1999.*
(73) Assignee: Applied Micro Circuits Corporation, Jiang et al. “DULO: An Effective Buffer Cache Management Scheme
Santa Clara, CA (US) to Exploit Both Temporal and Spatial Locality” (FAST ’05: 4th
USENIX Conference on File and Storage Technologies, 2005.*
(*) Notice: Subject to any disclaimer, the term of this Prvulovic et al. (“The Split Spatial/Non-Spatial Cache: A Perfor-
patent is extended or adjusted under 35 mance and Complexity Evaluation”, in Newsletter of Technical
Committee on Computer Architecture, IEEE Computer Society, Jul.
U.S.C. 154(b) by 91 days. 1999).*
This patent is subject to a terminal dis- (Continued)
claimer.
) Primary Examiner — Ryan Bertram
(21) Appl. No.: 13/478,100 Assistant Examiner — Tracy Chan
(22) Filed: May 22, 2012 gﬁl})) Attorney, Agent, or Firm — Amin, Turocy & Watson,
(51) Imt.ClL
GOGF 12/08 (2006.01) 67 ABSTRACT
(52) US.CL A memory system having increased throughput is disclosed.
CPC ... GOGF 12/0871 (2013.01); GO6F 12/0868 Spemﬁgally, the memory system includes a first level write
(2013.01) combining queue that reduces the number of data transfers
(58) Field of Classification Search between a level one cache and a level two cache. In addition,
USPC 711/118. 119. 122. 135. 144. E12.017 a second level write merging buffer can further reduce the
g lt file f ’ ’1 . ’ 1’1 hi t, ’ number of data transfers within the memory system. The first
e applcation lrie for complete search mstory. level write combining queue receives data from the level one
(56) References Cited cache. The second level write merging buffer receives data

U.S. PATENT DOCUMENTS

5,282,177 A * /1994 McLaury 365/230.05
5,539,805 A * 7/1996 Bishopetal. 711/138
5,561,780 A * 10/1996 Glewetal. 711/126
6,122,715 A * 9/2000 Palancaetal. 711/154
6,356,270 B2* 3/2002 Pentkovski et al. . 345/530
6,434,639 B1* 8/2002 Haghighi 710/39
6,560,669 B1* 5/2003 Ryan 711/105

from the first level write combining queue. The level two
cache receives data from both the first level write combining
queue and the second level write merging buffer. Specifically,
the first level write combining queue combines multiple store
transactions from the load store units to associated addresses.
In addition, the second level write merging buffer merges data
from the first level write combining queue.

24 Claims, 17 Drawing Sheets

MEMORY SYSTEM 300
LEVEL THREE MEMORY
SUB-SYSTEM 350
LOAD STORE UNIT P _ N LEVEL THREE
110 A R CACHE
STORE LEVEL FIRST LEVEL 355
PIPELINE ONE LEVEL TWO
119 ™ CACHE [—™ WRITE » CACHE A
310 COMBINING 340
QUEUE Y
320
LEVEL FOUR
T MEMORY
SUB-SYSTEM
. 358
SECOND >
LEVEL
Ly| WRITE
MERGING
BUFFER
330

US 9,280,479 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Jiang et al. “DULO: An Effective Buffer Cache Management Scheme
to Exploit Both Temporal and Spatial Locality” (FAST ’05: 4th
USENIX Conference on File and Storage Technologies).™

Yadgar et al. (Karma: Know-It-All Replacement for a Multilevel
cAche, FAST °07: 5th USENIX Conference on File and Storage
Technologies).™

Nazetal. (“Improving data cache performance with integrated use of
split caches, victim cache and stream buffers”, ACM SIGARCH:
MEDEA 2004 workshop, vol. 33 Issue 3, Jun. 2005, pp. 41-48.*

* cited by examiner

US 9,280,479 B1

Sheet 1 of 17

Mar. 8, 2016

U.S. Patent

(Uy Jold)
L Ol
> 6Ll m
INIT3dId (< ¥3TNAIHOS |=
L eyl 7oL | 3401S 3401S
IW31LSAS-9NS JHOVD JHOVD mmoﬁwmo
AHOWIW | f OML | I 3NO NOILONYLSNI
334HL 13ATT aElER 13N |- Ll cLL
e <

ANIT3dId (< d3TNAIHOS [«

Ol INILSAS AJOW3N

avo avoi

0Ll LINN 3401S avo

US 9,280,479 B1

Sheet 2 of 17

Mar. 8, 2016

U.S. Patent

6Ll

Z 9l
022
IN3ano
0SZ ovz ONINIGINOD 012
WNILSAS-9NS |«——— | IHOVD ALI-EAM JHOVO |«
AHOWIN OML 13A31 3INO
IIYHL T3ATT 13ATT 15414 13ATT

00¢ WA1SAS AJON3IN

dANI13dld
344018

oLl

1INN 34018 avo

US 9,280,479 B1

Sheet 3 0f 17

Mar. 8, 2016

U.S. Patent

6Ll

¢ 'old
0€e
¥344n4g
ONIOYIAN
JLIEM [
13AI1
aNoo3s
8G¢
W3L1SAS-GNS
AHOWAN F
¥N04 13ATT
0Z€
aNand
H ove ONINIGINOD 0LE
JHOVD |« LM JHOVO |
OML 13T aNo
cGe iELER 1S4l RELER
JHOVD
33YHL 13ATT ™

0G¢ WILSAS-aNsS
AHJOWIN F3HHL T13ATT

00€ WILSAS AJONAN

dANI3dId
J401S

Okl

1INN 3401S avo

US 9,280,479 B1

Sheet 4 of 17

Mar. 8, 2016

U.S. Patent

¥ 'Ol
2 U410 | —» Z SI
L 410 | > | SI
X 4ON I A OOM | X OV X 4 viva X 448aav X 3 OOM
¢ 40N I 4A OOM ¢ ov ¢ 4 vlva € 4d¥aav | € 3 oom
Z 40N I 4A OOM Z OV Z 4 vlvd Z 44aav ¢ 3 OOM
I 40N I 4A OOM I OV I 4 vilva I 4¥aav [~ | 3 OOM

US 9,280,479 B1

Sheet 5 0f 17

Mar. 8, 2016

U.S. Patent

VS 9Ol

_ _ 00000000 _ XXXXXXHXKXXXXXKXKXX _I 9 3 OOM
9 4ON 9 4A OOM 9 OV 9 4 vlva 9 4 ¥aav

_ _ 00000000 _ XXXXOKXHXKXXKXXKXXXX _I S I OOM
G 4ON G 4A OOM G OV ¢ 4 vlva G 4 ¥aav

_ _ 00000000 _ XHXXOKXHXKXHXXKXXXX _I Y3 OOM
¥ 4ON ¥ 4A OOM ¥ OV ¥ 4 vlva v 4 ¥aav

_ _ 00000000 _ XHXXOXXHXXHXXKXKXK _I e I OOM
€ 4ON € 4A OOM € OV € 4 vlva ¢ 4 ¥aav

_ | 00000000 | XXHKOXKKXKXXKXXKX AY - 3 oom
Z 40N Z 4A OOM T OV Z 4 vlva Z 4 ¥aav

| o | ooootloo | o XOOO00OXGGEZINXX LAY |- 13 oom
L 40N | JA OOM L OV I 4 vilva | 4 daav

008 |\A

US 9,280,479 B1

Sheet 6 of 17

Mar. 8, 2016

U.S. Patent

as ol

_ _ 00000000 _ _ XXOOCKXXXXNKXKXX _ _I 9 3 DOM
9 4ON 9 4A ODOM 9 OV 9 4 vlvd 9 4 daav

_ _ 00000000 _ _ XXXXXXXXXXKKXXKKX _ _I S 3 OOM
G dON S dA OOM G OV S 4 viva G 4 yaavy

_ _ 00000000 _ _ XXXXHXXXXXXXXXKXKX _ _I ¥ I OOM
¥ 4ON ¥ dA OOM + OV ¥ 4 vlvd ¥ 4 daav

_ _ 00000000 _ _ XXX XXHXXXXKX _ _I ¢TI OIOM
€ 40N € JdA OOM € OV ¢ 4 vlvad ¢ 4 ¥aav

| o | ooooritl | 0 | xooocoozisysewy | AV | 23 DOM
Z dON T dA OOM T OV Z 4 vlvad Z 4 ¥aav

| o | oooorioo | 1 | woocooxggezood | LAY | LT3 DOM
L 40N L 4A OOM | OV I 4 viva | 4 daavy

00§ \\A

US 9,280,479 B1

Sheet 7 of 17

Mar. 8, 2016

U.S. Patent

06 914
_ 00000000 _ _ XXX _ _I 9 3 OOM

9 40N 9 4dA DOM 9 2V 9 4 vlva 9 4 ¥aav
_ 00000000 _ _ XXXXOKXXXXXXXKXXXK _ _I S I OOM

G 4ON G 4A DOM G OV G 4 vlva S 4 ¥aav
_ 00000000 _ _ XHOOXHXXXHXXKXKK _ _I v 3 OOM

¥ 4ON ¥ dA OOM + OV v 4 vilva ¥ 4 ¥aav
0 | 1000 | o | sioczppweoocco | gAY | €73 ooMm

€ 40N € 4A ODOM € 2V € 4 vlva € 4 ¥yaav
0 | 0000LLLL | b | 000000ZLGPGSWY | T AY | 2 3 oom

Z dON T dA DOM T OV Z 4 vlva Z 4 ¥aav
0 | ooooLoo | g | woooooxggezook | LTAY | LT3 o0M

I 49DN L 4A DOM | OV I 4 vlva I 4 ¥aav

009 |\A

US 9,280,479 B1

Sheet 8 of 17

Mar. 8, 2016

U.S. Patent

as ‘ol

_ _ 00000000 _ _ XXXOOKKXXXKXXXXXK _ _I 9 3 OOM
9 4ON 9 4A DOM 9 OV 9 4 vlva 9 4 daav
_ _ 00000000 _ _ XXXOOXKKXXXXXKXKX _ _I S 3 OOM
G dON G 4A DOM S OV G 4 vlva G 4 ¥aav
_ _ 00000000 _ _ XXOOOCXXXXHXXXXX _ _I Y 3 OOM
¥ 4ON + dA DOM ¥ OV ¥ 4 vilvd v 4 ¥aav
| o | tioooo | o | sioezprwooccood | €AV | €73 00M
€ 40N € 4A ODOM € OV ¢ 4 vilva ¢ 4 yaav
| o | oooorirr | 1 | xooocoozigreswy | AV | 273 o0Mm
Z dON ¢ 4A ODOM ¢ OV Z 4 vlva Z 4 daav
| o | too | ¢ | aazasssdssezoox | LAV | 13 00Mm
I 4ON L dA DOM L OV I 4 v1lva I 4 ¥aav

00S |\A

US 9,280,479 B1

Sheet 9 of 17

Mar. 8, 2016

U.S. Patent

3G Old
| 00000000 | | x00000000000000¢ | - 93 oom
9 4ON 9 4A DOM 9 OV 9 4 vLvd 9 4 daav
| 00000000 | | 00000000000000¢ | - s 3 0oom
G 4ON G 4A DOM G OV G 4 vlva ¢ 4 ¥aav
_ 00000000 _ _ XXXXHXXXKXXXHXXKXKX _ _I ¥ 3 OOM
¥ 4ON ¥ 4A DOM ¥ OV ¥ 4 vlvd v 4 ¥aav
0 | 11110000 | 0 [slLoszrpwxooccox | €AY | €3 DOM
€ 40N € 4A DOM € OV € 4 vlva ¢ 4 ¥yaav
0 | 0000LLLL | 1 [x000000ZLGKSSYY | AV |- 2 3 OOM
Z 4ON 2 4A DOM T OV Z 4 vlvad Z 4 ¥aav
L | woo | v | aazasssdssezooc | LTAY | LT3 TOOM
L 40N L 4A DOM | OV I 4 v1lvad | 4 ¥aav

008 |\A

US 9,280,479 B1

Sheet 10 of 17

Mar. 8, 2016

U.S. Patent

46 oI
_ 00000000 _ _ XXXXXXKXXXXXKKXX _ _I 9 3 OOM
9 4ON 9 dA OOM 9 OV 9 4 viva 9 4 ¥aav
_ 00000000 _ _ XXXXXXHEXXHXXXKXX _ _I S 3 OOM
G d4ON S 4dA OOM S OV S 4 vilva ¢ 4 daav
L | oo00Ll00 | 0 | ooocoogzogwox | gAY | v T3 0Om
¥ 4ON ¥ dA OOM + OV ¥ 4 vLvd ¥ 4 daav
L | woooo | 1 | sioserpwooocooc | gAY | €73 oom
€ 4ON € 4A OOM € OV ¢ 4 viva ¢ 4 ¥aav
0 | oooolitt | z | wooovoxziersswy | AV | 23 oom
Z dON T dA OOM T OV Z 4 vlva Z 4 ¥aav
0 _ 00000000 _ _ XXXXXXHEXXHXXXKXX _ _I LT3 OOM
L 4ON | A DOM | OV I 4 vilvd I 4 daav

00S |\A

U.S. Patent Mar. 8, 2016 Sheet 11 of 17 US 9,280,479 B1

s 500
ADDR F 1 DATA F 1 AC1 WCQVF 1 NOF.1

WCQE 1 XOOOO00OKIO0NK 00000000 | 0 "TS_P' | CTR 1
ADDR F 2 DATA F 2 AC2 WCQVF2 NCF2

WCQE2- AV2 | AMSS5T2xoooox | 4 | 11110000 | 1 d}s-—z—- | CTR 2
ADDR F 3 DATA_F 3 AC.3 WCQVF3 NCF.3

WCOES < AV3 | wcoooxhd23C15 | 2] 00001111 | 1

ADDR_F 4 DATA_F 4 AC 4 WCQVF 4 NCF 4
WCOE4~ AV | xooB622000cx | 1| 00110000 |

ADDRF5 DATAFS ACS WOQVF5 NCF5
WCQ_E_5 - | HXRRRRRRRKKK | 00000000 |

ADDRF 6 DATAF6 ACE WCQVFE NCF6
WCQ_E_6 - | oo | | 00000000 |

FIG.5G

U.S. Patent Mar. 8, 2016 Sheet 12 of 17 US 9,280,479 B1

’/ 500

ADDRF1 DATAF1 AC1 WCQVF1 NCF1
WCQ_E_1 | xoooonocoonond | | 00000000 | 0 <—— [CTR 1

ADDR_F_2 DATA F 2 AC2 WCQVF2 NCF2
WCQ_E 2 I XXKXOKXXXXKXNK (0000000 0 <4—— | CTR 2

ADDRF3 DATAF3 AC3 WCQVF3 NCF3
WCQE3 - A3 | woooccddd23015 | 2 | o000ttt |

ADDRF4 DATAF4 AC4 WCQVF4 NCF4
WOQE4- A3 | xoxB62mecox | 1 | 00110000 |

ADDR F 5 DATAF & AC5 WCQVF 5 NCF.5
WCQ_E_5—| { XXXXXXXXKXKXXXKX | | 00000000]

ADDR F 6 DATA F 6 AC6 WCQVF 6 NCF&6
WCQ_E 6 - | ooooooocman | | 00000000 |

FIG. 5H

U.S. Patent Mar. 8, 2016 Sheet 13 of 17 US 9,280,479 B1

?/- 500

ADDR F 1 DATA_F 1 AC_1 WCQVF1 NCF_1

WCQE1- AV1 | ABCDEF35woexex | 0 | 11110000 | 0 T 1LOR !
ADDRF2 DATAF2 AC2 WCQVF2 NCF2
WCQ_E_2 XXXXXKXXXXXXXXXXX 00000000 0 4—’Sr;ﬁ | CTR 2

ADDR_F_3 DATA F 3 AC3 WCQVF3 NCF3
WCQE_3 XXXXXHXKKXKKXXXKKK 00000000 0

ADDRF4 DATAF4 AC4 WOQVF4 NOF 4
WCOE4- AV3 | xoxs622comoox | 1| 0010000 | 1]

ADDR_F_5 DATAF S AC5 WCQVFS5 NCF5
WCQ_E § — XXX XXKXKXXX 00000000

ADDR F 6 DATA F 6 AC 6 WCQVF 6 NCF6
WCQ_E_G—{ XXXXXXXKXXKOOKXXX] | 00000000 I -

FIG. 51

U.S. Patent Mar. 8, 2016 Sheet 14 of 17 US 9,280,479 B1

| CTR 3

IS_3

600

MERGING CONTROL
BUFFER 620
FIG. 6

DATA BUFFER 610

US 9,280,479 B1

Sheet 15 0of 17

Mar. 8, 2016

U.S. Patent

B

X 4Mm4 X 44 |X 4d149a X 4A 9a X OV X 4 daav X 4 119a — X 3 90
¢ 4Mg ¢ 44 | € 4d749d € 4A 9a € oV ¢ 4 daav ¢ 4 11g9a — ¢ 3 90N
Z dMd ¢ 44 |Z 4d19a Z 4N 9d Z OV Z 4 daav Z 4 119d — ¢ 3 9O
I 4Md I 4y I 44790 I 4A 9d I OV | 4 ¥aav I 4 1719a — 1 3 9ON

omwll\\\\\

US 9,280,479 B1

Sheet 16 of 17

Mar. 8, 2016

U.S. Patent

8 'Old

GG8 NOILO3F4d3d
ANIT V1vd MO3HO

+

0¢8
d34SNVHL ViIvAd 394N

08
SHILNNOD IOV INJWFHONI

+

ges
d34SNVYHL VLIVAd 3H01S

+

0¢8
Ad1N3 9O FLVIOOSSY

+

GZ8 ANIT
4344N9 v.1va 31LvO0T1v

+

0¢8 SS3daav
d31vIOOSSY 404 MO3HO

+

g8
H34SNYYHL V.LVA NOI'Y

+

018
H34SNVYHL VLIVA JO04 LIVM

oowl\\\

US 9,280,479 B1

Sheet 17 of 17

Mar. 8, 2016

U.S. Patent

6 Old

GZ6
AdLNd 90N 3Sva13d

+

026 3ANIT
d344N49 vivd 3Sv3ai3d

+

GE6 IHOVO I3HHL
13A37 OL vVLvd F1I-dM

£16 9JHOVO
OML T3ATT OL VLVvA ALIdM

0¥6 WI1SASANS
AHOWN3IN INO4
13A31 OL VLVA J1I-dM

+

+

0€6 3dAL NOILOVSNVYHL
Jd401S ANING313d

Gl6
SN1V1S 3ANIT VLVd XO3HO

ooml.\\

+

0l6
SOV14 AdVdd JOLINOW

US 9,280,479 B1

1

MULTI-LEVEL STORE MERGING IN A
CACHE AND MEMORY HIERARCHY

BACKGROUND

1. Background Field

The present invention relates to memory systems and in
particular to cache and memory hierarchy.

2. Relevant Background

Processors, such as microprocessors, digital signal proces-
sors, and microcontrollers, are generally divided into many
systems and sub-systems, such as a memory system, a pro-
cessing unit, and load store units. The load store unit transfers
data between the processing units and the memory system.
Specifically, the load store unit reads (i.e. loads) data from the
memory system and writes (i.e. stores) data to the memory
system. To improve performance, memory systems generally
have a memory hierarchy using one or more level of caching.

FIG. 1 shows a simplified block diagram of a load store unit
110 coupled to a memory system 140. Load store unit 110
includes an instruction decoder 111, a load scheduler 113, a
load pipeline 115, a store scheduler 117, and a store pipeline
119. Memory system 140 includes a level one cache 142, a
level two cache 143, and a level three memory sub-system
144. In various embodiments of memory system 140, level
three memory sub-system 144 may include additional cache
levels in addition to the main memory. In some processors,
instruction decoder 111 may be part of another subsystem.
Instruction decoder 111 decodes the program instructions and
sends load transactions to load scheduler 113 and store trans-
actions to store scheduler 117. Other types of instructions are
sent to appropriate execution units, such as a floating point
execution unit, or an integer execution unit. In most systems
with multiple processing units, each processing unit includes
a separate load/store unit. Store scheduler 117 schedules the
store transactions and issue store transactions to store pipe-
line 119. Store pipeline 119 executes the store transactions,
which typically stores data into memory system 140. Load
scheduler 113 schedules the load transactions and issue load
transactions to load pipeline 115 for execution. L.oad pipeline
115 executes the load transactions and reads the requested
data from memory system 140.

Generally, load store unit 110 communicates directly with
level one cache 142 and memory system 140 controls the data
flow between level one cache 142, level two cache 143 and
level three memory sub-system 144. Level one cache 142 and
level two cache 143 are used to improve overall memory
throughput of memory system 140. For example, level three
memory sub system 144 would generally include a large
memory unit that is typically made with high density memory
devices that have slow access times. Level one cache 142 and
level two cache 143 are made with faster memory devices that
require larger area or are of greater cost than the high density
memory devices used in level three memory sub-system 144.

When, load store unit 110 requests data at a location that is
stored or “cached” in level one cache 142, i.e. a level one
cache hit, or in level two cache 143, i.e. a level two cache hit,
the data can be supplied to load store unit 110 very rapidly
because access to high density memory devices is not
required. Data in level one cache 142 would be available even
faster than data in level two cache 143. In most embodiments
of memory system 140, when load store unit 110 writes data
to amemory location memory system 140, data can be written
directly to level one cache 142 whether or not the memory
location is currently cached in level one cache 142. Specifi-
cally, if the memory location is cached than the data is simply
stored in the appropriate cache location. If the memory loca-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion is not cached, space in level one cache will be allocated
for the memory location. Once data is written into level one
cache 142, memory system 140 will eventually transfer the
data to level two cache 143 and level three memory sub-
system 144.

Generally, level one cache 142 has a first cache width (i.e.
the size of a cache line) and level two cache 143 has a second
cache width that is larger the first cache width of level one
cache 142. The transfer of data from level one cache 142 to
level two cache 143 and level three memory sub-system 144
greatly burdens the throughput of memory system 140. Hence
there is a need for a method and system to improve the transfer
of data between memory levels in a multi-level memory sys-
tem.

SUMMARY

Accordingly, the present invention provides a first level
write combining queue that reduces the number of data trans-
fers between a level one cache and a level two cache. In
addition some embodiments of the present invention also
include a second level write merging buffer that can further
reduce the number of data transfers within a memory system.
Embodiments of the present invention can be used with sys-
tems having multiple processing units as well as single core
processors. Specifically, in one embodiment of the present
invention the memory system, a memory system for receiving
data from a load store unit includes a first level data cache, a
first level write combining queue, a second level write merg-
ing buffer and a second level data cache. The level one cache
is coupled to receive data from the load store unit. The first
level write combining queue coupled to receive data from the
level one cache. The second level write merging buffer is
coupled to receive data from the first level write combining
queue. The level two cache is coupled to receive data from
both the first level write combining queue and the second
level write merging buffer. Specifically, the first level write
combining queue is configured to combine multiple store
transactions from the load store units to associated addresses.
In addition, the second level write merging bufter is config-
ured to merge data from the first level write combining queue.

In addition in some embodiments of the present invention
the destination of the data in the second level write merging
buffer is determined dynamically based on the status of the
data and the transaction type of the write command. For
example, when a data buffer line is “perfected”, i.c. every data
line data byte in the data buffer line contains valid data, and
the write command was a block write command, then the data
in the data line buffer is stored in a level four memory sub-
system. When the data buffer line is perfected and the write
command was not a block write command then the data is
stored in a level three cache. However, if the data in a data
buffer line is to be written out before the data buffer line is
perfected, the data is stored in the level two cache.

The present invention will be more fully understood in
view of the following description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is a simplified block diagram of a load store unit and
a memory system.

FIG. 2 is a simplified block diagram of a load store unit
with a memory system in accordance with one embodiment
of the present invention.

FIG. 3 is a simplified diagram of a load store unit with a
memory system in accordance with another embodiment of
the present invention.

US 9,280,479 B1

3

FIG. 4 is a block diagram of a first level write combining
queue in accordance with one embodiment of the present
invention.

FIGS. 5A-51 are simplified diagrams illustrating the use of
a first level write combining queue in accordance with one
embodiment of the present invention.

FIG. 6 is a block diagram of a second level write merging
buffer in accordance with one embodiment of the present
invention.

FIG. 7 is a block diagram of a merging control buffer in
accordance with one embodiment of the present invention.

FIG. 8 is a flow diagram for a second level write merging
buffer in accordance with one embodiment of the present
invention.

FIG. 9 is a flow diagram for a second level write merging
buffer in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION

As explained above, data transfers between various
memory levels of multi-level memory systems reduce the
bandwidth and throughput of the memory system. However,
in accordance with embodiments of the present invention,
memory systems include write combining queues and write
merging buffers to reduce the number of data transfers
between various memory levels in the memory system. FIG.
2 shows a simplified block diagram of memory system 200 in
accordance with one embodiment of the present invention
coupled to a load store unit 110. Due to space limitation only
store pipeline 119 is shown in FIG. 2. Memory system 200
includes a level one cache 210, a first level write combining
queue 220, a level two cache 240, and a level three memory
sub-system 250. Level one cache 210 receives data from load
store unit 110. First level write combining queue 220 is
coupled between level one cache 210 and level two cache 240
and is used to reduce the number of data transfers between
level one cache 210 and level two cache 240 as explained
below. Furthermore, in some embodiments of the present
invention, first level write combining queue 220 is also
coupled to level three memory sub-system 250. Level three
memory sub-system 250 is also coupled to level two cache
240.

Level one cache 210 has a first cache width CW1 and level
two cache 240 has a second cache width CW2, which is
greater than or equal to first cache width CW 1. Furthermore,
load store unit 110 generally operates using a store data width
SDW that is smaller than first cache width CW1 and second
cache width CW2. For example, in one embodiment of the
present invention, store data width SDW is 8 bytes, first cache
width CW1 is 16 bytes and second cache width CW2 is 64
bytes. As explained above, generally after data is written into
level one cache 210, the data will at some later point be
transferred to level two cache 240, and to level three memory
sub-system 250. For example, “write through caches” would
write data coming into level one cache 210 to level two cache
240 as soon as possible. However, because store data width
SDW of load store unit 110 is smaller than first cache width
CW1 and second cache width CW2, there may be many
situations when data from multiple store instructions from
load store unit 110 would be in the same cache line of level
two cache 240. In conventional memory systems, such as
memory system 140, every store instruction that puts data into
level one cache 142 would cause a data transfer from level one
cache 142 to level two cache 143 (FIG. 1). However, in
memory system 200, the data stored in level one cache 210
from multiple store instructions can be combined using first

20

25

35

40

45

55

4

level write combining queue 220. The combined data is then
transferred to level two cache 240 or level three memory
sub-system 250 using one data transfer. Generally, data from
store instructions to associated addresses can be combined.
Generally, memory addresses are associated if the addresses
can be mapped into a single cache line of level one cache 210.
A detailed embodiment of first level write combining queue
220 is described below and illustrated in FIG. 4.

In embodiments of the present invention in which cache
width CW1 of level one cache 210 is smaller that cache width
CW2 of level two cache 240, there may be many situations
when different cache lines in level one cache 210 would map
to a single cache line in level two cache 240. Therefore, some
embodiments of the present invention also include a second
level write merging buffer as illustrated in FIG. 3. Specifi-
cally, FIG. 3 shows a simplified block diagram of memory
system 300 in accordance with one embodiment of the
present invention coupled to a load store unit 110. Memory
system 300 includes a level one cache 310, a first level write
combining queue 320, a second level write merging buffer
330, a level two cache 340, and a level 3 memory sub-system
350, which includes a level three cache 355 and a level four
memory sub-system 358. In memory system 300, first level
write combining queue 320 and second level write merging
buffer 330 are used together to greatly reduce the number of
memory transfers in memory system 300. As in memory
system 200, first level write combining queue 320 is coupled
between level one cache 310 and level two cache 340. How-
ever, in memory system 300, first level write combining
queue 320 is also coupled to write data into second level write
merging buffer 330 under conditions described below. Sec-
ond level write merging buffer 330 combines data from first
level write combining queue 320 and writes the combined
data into level two cache 340, level three cache 355, or level
four memory sub-system 358. Generally, a data value DV__1
for an address value AV__1 written out from first write level
write combining queue 320 are stored in level two cache 340
if address value AV__1 is cached in level two cache 340 (i.e. a
level two cache hit). However, if address value AV__1 is not
cached in level two cache 340 (i.e. a level two cache miss),
data value DV__1 is stored in second level write merging
buffer 330. If additional data fields are written out from first
level write combining queue having addresses associated
with addresses of data values already in second level write
merging buffer 330 the data values can be combined. The
combined data values are later written from second level write
merging buffer 330 to level two cache 340, level three cache
355 or level four memory sub-system 358 as described in
detail below. A specific embodiment of second level write
merging buffer 330 is describe below and illustrated in FIG. 6.

FIG. 4 is a block diagram of a first level write combining
queue 400 in accordance with one embodiment of the present
invention. First level write combining queue 400 includes
multiple write combining queue entries (hereinafter WCQ
entries, a first increment counter I_CTR__1 and a second
increment counter ICTR 2. Specifically, write combining
queue 400 includes X WCQ entries WCQ_E 1 to
WCE_E_X. WCQ entry WCQ__1 includes an address field
ADDR_F_ 1,adatafield DATA_F_ 1, anage counter AC_1,
awrite combining queue valid flag WCQ_VF__1 (herein after
WCQ valid flag), and a non-combinable flag NCF__ 1. Simi-
larly, each WCQ entry WCE_E_Y includes an address field
ADDR_F_Y, a data field DATA_F_Y, an age counter AC_Y,
a WCQ valid flag WCQ_VFE_Y, and a non-combinable flag
NCF_Y. Address field ADDR_F_Y is used to store the
address of the data stored in WCQ entry WCQ_E_Y. Data
field DATA_F_Y is used to store data value from the store

US 9,280,479 B1

5

transactions. Data field DATA_F_Y includes multiple data
byte fields. A particular store instruction may have data for
only a subset of the data byte fields of data field DATA_F_Y.
WCQ valid flag WCQ_VF_Y is used to indicate which data
byte fields in data field DATA_F_Y contain valid data. Thus
for example, in an embodiment of a write combining queue in
accordance with the present invention, data field DATA_F 1
has 16 bytes (i.e. 16 data byte fields) and WCQ valid flag
WCQ_VF_Y has 16 bits, with each bit corresponding to one
byte of data field DATA_F_ 1. For clarity, the Z data byte
fields of a data field DATA_F_Y is referenced as data byte
fields DATA F . Y_1, DATA F.Y_2,...DATA F Y _Z.
Similarly, the Z WCQ valid flag bits of WCQ valid flag
WCQ_VF_Y isreferenced as WCQ valid flag WCQ_VF_Y
1,WCQ_VF_Y_2,... WCQ_VF_Y_Z. When data is written
into a data field byte DATA_F_Y_Z, the corresponding WCQ
valid flag bit WCQ_VF_Y_Z is set to a valid state (typically
logic 1). When the data in a WCQ entry WCQ_E_Y is trans-
ferred out of first level write combining queue 400, the WCQ
valid flag bits of WCQ valid flag WCQ_VF_Y are all setto an
invalid state (typically logic 0).

Age counter AC_Y is used to indicate the age of the data in
WCQ entry WCQ_E_Y and is used to determine when the
data in a WCQ entry WCQ_E_Y is transferred out of first
level write combining queue 400 as explained below. Non-
combinable flag NCF_Y indicates whether additional data
can be combined with the data in data field DATA_F_Y.
Generally, certain special operations, such as cache manage-
ment operations, can not be combined. When these special
operations are stored in a WCQ entry WCQ_E_Y, non-com-
binable flag NCF_Y is set to a valid state (typically logic 1).
When non-combinable flag NCF_Y is in the valid state, later
store transactions are not combined with into WCQ entry
WCQ_E_Y. The non-combinable flag is also used in deter-
mining when a WCQ entry is written out of first level write
combining queue 400 as described below.

When a store transaction arrives in write combining queue
400, the address in the store transaction is compared to the
addresses in the valid combinable WCQ entries containing
valid data (i.e. WCQ entries in which at least one WCQ valid
flag bit is in the valid state and the non-combinable flag is in
the invalid state). If the address in the store transaction is
associated with an address in a valid combinable WCQ entry
the data from the store transaction is combined into the data
field of the valid combining WCQ entry. If none of the
addresses in valid combinable WCQ entries are associated
with the address in the store transaction, the data and address
in the store transaction are stored in an empty WCQ entry if
one is available. If none of the WCQ entries are empty, the
store transaction would stall.

The longer a WCQ entry remains in the first level write
combining queue the more opportunities for write combining
occurs. However, the WCQ entries can not remain in the first
level write combining queue indefinitely. Therefore, first
level write combining queue 400 includes a mechanism to
insure that WCQ entries are written out within a reasonable
time period.

Specifically, first increment counter I_CTR__1 produces a
first increment signal IS_ 1 that has an increment transition
once every increment period INC_PER 1. Second incre-
ment counter |_CTR 2 produces a second increment signal
IS__2 that has also has an increment transition once every
increment period INC_PER_ 2. In one embodiment of the
present invention, increment period INC_PER__ 1 and incre-
ment period INC_PER 2 are both 16 clock cycles. However
increment signal IS 1 and IS_ 2 are offset so that the incre-
ment transitions of increment signal IS_ 2 are located in

25

30

40

45

50

55

6

between the increment transitions of increment signal IS_ 1.
Increment transitions on increment signal IS 1 causes the
age counters of all valid WCQ entries to increment. Further-
more, increment transitions on increment signal IS_ 2 causes
the age counter of the valid WCQ entry with the largest age
counter value to increment (i.e. the oldest valid WCQ entry).
When age counter AC_Y of a valid combinable WCQ entry
WCQ_E_Y reaches a WCQ age threshold WCQ_T_AGE,
non-combinable flag NCF_Y of WCQ entry WCQ_E_Y is set
to the valid state. When the oldest valid WCQ entry (i.e. the
WCQ entry with the largest age counter) has a valid non-
combinable flag, the oldest valid WCQ entry is written out of
the first level write combining queue as soon as possible.
Thus, the non-combinable flag can also be considered to be a
ready to issue flag.

FIGS. 5A-51 illustrate the operation of a first level write
combining queue 500 in accordance with one embodiment of
the present invention using the seven store transactions shown
in Table 1. First level write combining queue 500 includes 6
WCQ entries, each of which has a data field with 8 data byte
fields. However other embodiments of the present invention,
may have data fields with more or less data byte fields. For
example, one embodiment of the present invention includes
data fields with 16 data byte fields. FIGS. 5A-51 also show
increment signals IS 1 and IS_ 2. The time interval shown
on increment signal IS_ 1 and IS_ 2 in each of FIGS. 5A-51
represents the time between the previous figure and the cur-
rent figure. For example, in FIG. 5B, increment signal IS_ 1
shows an increment transition occurred between the time if
FIG. 5A and the time of FIG. 5B. In FIG. 5C, increment
transitions are shown on both signal IS_ 2 and increment
signal IS _ 1. The increment transition on increment signal
IS_ 2 is placed to the left of the increment transition on
increment signal I 1 to indicate that the increment transition
onincrement signal IS_ 2 occurred before the increment tran-
sition on increment signal IS_ 1.

Furthermore, first level write combining queue 500 uses
physical addresses and two addresses are associated only if
they are equal. In Table 1, the data for each store transaction
is written using hexadecimal (i.e. 2 characters per byte) how-
ever “xx” is used for data byte fields that are not used in the
store transaction. Furthermore, the address values for the
store transaction is written as AV_X. In addition, each store
transaction in Table 1 include a non-combinable marker
NCM. Store transactions that are non-combinable have a
non-combinable marker set to a valid state (i.e. 1 in table 1)

TABLE 1
TRANSACTION ADDRESS DATA NCM
ST1 AV 1 KXXXX2355XXXXXXXX 0
ST2 AV 2 AAS5545] 2XXXXXXXX 0
ST3 AV 3 XXXXXXXXA4423C15 0
ST4 AV 1 XXXXXXxXF553EEDD 0
ST5 AV 3 KXXX5622XXXXXXXX 1
ST6 AV 1 ABCDEF35XXXXXXXX 0

In FIG. 5A, the data value and address value from store
transaction ST1 has been written into WCQ entry WCQ_E_1
offirst level write combining queue 500. Specifically, address
value AV__1 is written into address field ADDR_F_ 1 and
data value 23 and 55 are written into the third and fourth data
byte field of data field DATA_F 1, respectively. (thus data
field DATA_F_1is shownto contain “xxxx2355XxXXXXxXxX"").
Because only third and fourth data byte field of data field
DATA_F__ 1 contain valid data, WCQ valid flagWCQ_VF__1
is set to 00110000, i.e. the third and fourth WCQ valid flag bit

US 9,280,479 B1

7

of WCQ valid flag WCQ_VF__1 is set to the valid state (logic
1) while the other WCQ valid flag bits are set to the invalid
state (logic 0). Age counter AC__1 is set to zero and non-
combinable flag NCF__1 is set to the invalid state (logic 0) to
indicate that WCQ entry WCQ_E__1 is a combinable WCQ
entry.

In FIG. 5B, an increment transition has occurred on incre-
ment signal IS__ 1. Thus, age counter AC__1 of WCQ entry
WCQ_E_ 1 has been incremented to 1. Then the data value
and address value from store transaction ST2 has been written
into WCQ entry WCQ_E_ 2 of first level write combining
queue 500. Specifically, address value AV_ 2 is written into
address field ADDR_F__ 2 and data value AA, 55, 45 and 12
are written into the first, second, third, and fourth data byte
field of data field DATA_F_ 2, respectively. (thus data field
DATA_F 2 is shown to contain “AAS554512xxXxxXxx”).
WCQ valid flag WCQ_VF_ 2 is setto 11110000, i.e. the first,
second, third and fourth WCQ valid flag bit of WCQ valid flag
WCQ_VF_ 2 is set to the valid state (logic 1) while the other
WCQ valid flag bits are set to the invalid state (logic 0). Age
counter AC 2 is set to zero and non-combinable flag NCF_ 2
is set to the invalid state (logic 0) to indicate that WCQ entry
WCQ_E_ 2 is a combinable WCQ entry.

In FIG. 5C, an increment transition has occurred on incre-
ment signal IS_ 2 as well as on increment signal IS__1. Thus,
age counter AC__1 of WCQentry WCQ_E__1 has been incre-
mented to 3 (once for the increment transition in increment
signal IS_ 2 and once for the increment transition on incre-
ment signal IS__1). Age counter AC_ 2 is incremented to 1
due to the increment transition on increment signal IS 1.
Because WCQ entry WCQ_E__1 is older than WCQ entry
WCQ_E_ 2, age counter AC_ 2 ignores the increment tran-
sition on increment signal IS 2. Also the data value and
address value from store transaction ST3 has been written
into WCQ entry WCQ_E_ 3 of first level write combining
queue 500. Specifically, address value AV__3 is written into
address field ADDR_F__3 and data value A4, 42, 3C and 15
are written into the fifth, sixth, seventh and eighth data byte
field of data field DATA_F_ 3, respectively. (thus data field
DATA_F 3 is shown to contain “xxxxxxxxA4423C15”).
WCQ valid flag WCQ_VF_ 3 is setto 00001111, i.e. the fifth,
sixth, seventh, and eighth WCQ valid flag bit of WCQ valid
flag WCQ_VF__3 is set to the valid state (logic 1) while the
other WCQ valid flag bits are set to the invalid state (logic 0).
Age counter AC__3 is set to zero and non-combinable flag
NCF_3 is set to the invalid state (logic 0) to indicate that
WCQ entry WCQ_E_ 3 is a combinable WCQ entry.

In FIG. 5D, the data value and address value from store
transaction ST4 are combined into WCQ entry WCQ_E_ 1
because store transaction ST4 has address value AV__1 which
is the same as the address field ADDR_F_ 1 of WCQ entry
WCQ_E__1. Specifically, data value F5, 53, EE and DD are
written into the fifth, sixth, seventh and eighth data byte field
of data field DATA_F 1, respectively. (thus data field
DATA_F_ 13 is shown to contain “xxxx2344F553EEDD”).
WCQ valid flag WCQ_VF_1 is set to 00111111, i.e. the
third, fourth, fifth, sixth, seventh, and eighth WCQ valid flag
bit of WCQ valid flag WCQ_VF__1 is set to the valid state
(logic 1) while the other WCQ valid flag bits are set to the
invalid state (logic 0). No increment transitions occurred on
increment signals IS 1 or IS_ 2 between FIG. 5C and FIG.
5D.

In FIG. 5E, an increment transition has occurred on incre-
ment signal IS_ 2. Thus, Age counter AC__1 of WCQ entry
WCQ_E__1isincrementedto 4 by the increment transition on
increment signal IS_ 2. WCQ age threshold WCQ_T_Age in
the example of FIGS. 5A-5] is also equal to 4. Thus, when age

10

20

25

30

35

40

45

55

60

8

counter AC__ 1 of WCQentry WCQ_E__1isincremented to 4,
non-combinable flag NCF_ 1 of WCQ entry WCQ_E 1 is
set to the valid state (as shown in FIG. 5(E). Thus, in FIG. 5E,
WCQ entry WCQ_E__11isready to issue and should be issued
as soon as possible. Because WCQ entries WCQ_E_ 2 and
WCQ_E_3 are not the oldest WCQ entry, age counters
AC 2 and AC_ 3 ignore the increment transition on incre-
ment signal IS_ 2.

Because WCQ entry WCQ_E_ 1 is the oldest WCQ entry
and non-combinable flag NCF__1 was set (see FIG. 5E),
WCQ entry WCQ_E__1 is written out of first level write
combining queue 500 as soon as possible. This is illustrated in
FIG. 5F, with WCQ entry WCQ_E__1 now being available for
new data with WCQ valid flag WCQ_VF__1 being set to the
invalid state of 00000000. Furthermore, data field
DATA_F 1 is shown to contain no valid data using with the
presence of undefined data value XXXXXXXXXKXXKXXKXXX.
Non-combinable flag NCF__1 is resetto 0, age counter AC__1
no longer holding a relevant value, and address field
ADDR_F__1 also being empty.

In between FIGS. 5E and 5F, an increment transition
occurred on increment signal IS__1 thus age counter AC_ 2 is
incremented to 2 and age counter AC_ 3 is incremented to 1.
Furthermore, store transaction ST5 is received in first level
write combining queue 500. Because the non-combinable
marker for store transaction ST5 is set to the valid state, the
data from store transaction ST5 can not be combined with the
datain WCQ entry WCQ_E 3 even though the address value
for store transaction STS is the same as the address value in
address field ADDR_F_ 3. Thus, the data value and address
value from store transaction STS has been written into WCQ
entry WCQ_E__ 4 of first level write combining queue 500.
Specifically, address value AV_ 3 is written into address field
ADDR_F_ 4 and data value 56, and 22 are written into the
third and fourth data byte field of data field DATA_F 4,
respectively. (thus data field DATA_F_ 4 is shown to contain
“xxxx5622xxxxxxxX”"). WCQ valid flag WCQ_VF__4 is set
to 00110000, i.e. the third and fourth WCQ valid flag bit of
WCQ valid flag WCQ_VF__ 4 is set to the valid state (logic 1)
while the other WCQ valid flag bits are set to the invalid state
(logic 0). Age counter AC__4 is set to zero and non-combin-
able flag NCF_ 4 is set to the valid state (logic 1) to indicate
that WCQ entry WCQ_E__ 4 is now a non-combinable WCQ
entry. Furthermore, because the address value AV__ 3 of store
transaction STS is equal to the value stored in address field
ADDR_F_ 3 of WCQentry WCQ_E__ 3 and store transaction
ST5 was non-combinable, WCQ_E 3 also becomes non-
combinable. Therefore, non-combinable flag NCF_ 3 issetto
the valid state. In other embodiments of the present invention,
non-combinable store instructions do not change the non-
combinable flags of other WCQ entries.

Even though WCQ entries WCQ_E_3andWCQ_E_ 4 are
now non-combinable WCQ entries, they are not written out of
first level write combining queue 500 because WCQ entry
WCQ_E_ 2 is oldest entry. However, in other embodiments
of'the present invention, non-combinable WCQ entries can be
written out of the first level write combining queue before
older combinable WCQ entries. Thus in those embodiments,
WCQ entry WCQ_E__ 3 which is the oldest non-combinable
WCQ entry would be written out of first level write combin-
ing queue 500.

In the time between FIG. SF and FIG. 5G an increment
transition has occurred on increment signal IS 2 and incre-
ment signal IS 1. The increment transition on increment sig-
nal IS 2 causes the age counter of the oldest valid WCQ entry
to increment. Thus age counter AC_2 of WCQ entry
WCQ_E_ 2is incremented to be equal to 3. The age counters

US 9,280,479 B1

9

of'the other valid WCQ entries ignore the increment transition
on increment signal IS 2. In addition, the increment transi-
tion on increment signal IS 1 causes the age counters of all
WCQ entries to increment. Thus, age counters AG_ 2, AG_ 3,
and AG_ 4 are incremented to 4, 2 and 1, respectively. In
addition, because WCQ age threshold WCQ_T_Age in the
example of FIGS. 5A-5] is also equal 4, non-combinable flag
NCF_2 of WCQ entry WCQ_E_ 2 is set to the valid state
(logic 1). Thus, WCQ entries WCQ_E_ 2, which is the oldest
WCQ entry and has its non-combinable flag set, is ready to be
issued.

InFIG.5H, WCQ entry WCQ_E__2 has been written out of
level write combining queue 500. Thus, WCQ entry
WCQ_E_ 2 available for new data. This is illustrated in FIG.
5H with WCQ valid flag WCQ_VF__2 being set to the invalid
state of 00000000. Furthermore, data field DATA_F_ 2 is
shown to contain no valid data using with the presence of
undefined data value XXXXXXXXXXxxxxxxxx. Non-combin-
able flag NCF__2 is reset to 0, age counter AC__2 no longer
holding a relevant value, and address field ADDR_F_ 2 also
being empty.

No increment transitions occurred on increment signals IS
1 or IS 2 between FIG. 5G and FIG. 5H. Thus, age counters
AG__3 and AG_ 4 are unchanged between FIG. 5G and FIG.
5H.

In FIG. 51, the data value and address value from store
transaction ST6 are added into WCQ entry WCQ_E_ 1
because store transaction ST6 has address value AV 1 which
is not associated with any of the address in valid WCQ entries.
Specifically, data value AB, CD, EF, and 35 are written into
the first, second, third, and fourth data byte field of data field
DATA_F_ 1, respectively. (thus data field DATA_F_ 13 is
shown to contain JJABCDEF35xxxxxxxx”). WCQ valid flag
WCQ_VF__lissetto 11110000. Age counter AC__1 is setto
zero. Furthermore WCQ entry WCQ_E_ 3 which was the
oldest WCQ entry and in which noncombinable flag NCF__3
was in a valid state, was written out of first level write com-
bining queue 500. This is illustrated in FIG. 51, with WCQ
entry WCQ_E_ 3 now being available for new data with
WCQ valid flag WCQ_VF__3 being set to the invalid state of
00000000. Furthermore, data field DATA_F 3 is shown to
contain no valid data using with the presence of undefined
data value xXxxXXxXXXXxxxxxxx. Non-combinable flag NCF
3 isresetto 0, age counter AC__3 no longer holding a relevant
value, and address field ADDR_F 3 also being empty. An
increment transitions occurred on increment IS 2 prior to
WCQ entry WCQ_E_ 3 being written out of first level write
combining queue 500. Thus, age counter AG__3 would have
been incremented to 3. Age counters AC_1 and AC_ 4
ignored the increment transition on increment signal IS_ 2
because at the time of the increment transition WCQ entry
WCQ_E__ 3 was the oldest valid WCQ entry.

First level write combining queue 500 would proceed in the
same manner as described above with additional store trans-
actions. In addition WCQ entry WCQ_E__4 would be written
out as soon as possible because WCQ entry WCQ_E_ 4 is
ready to be issued because non combinable flag NCF_ 4 is in
a valid state and WCQ entry WCQ_E_ 4 is the oldest valid
WCQ entry.

As explained above, when WCQ entry WCQ_E_Z in first
level write combining queue 320 (FIG. 3) is transferred out of
first level write combining queue 320, address value AV_Z
that was stored in address field ADDR_F_Z, datavalue DV_Z
that was stored in data field DATA_F_Z, and WCQ valid flag
WCQ_VF_Z are sent to either level two cache 340 or second
level write merging buffer 330. Specifically, if the address
value AV_Z leads to a level two cache hit address values

20

25

30

40

45

50

10

AV_7, data value DV_Z, and WCQ valid flag WCQ_VF_7Z
are sent to level two cache 340. However if the address value
leads to a level two cache miss, then address value AV_Z, data
value DV_Z7, and WCQ valid flag WCQ_VF_Z are trans-
ferred to second level write merging buffer 330. In second
level write merging buffer 330, address value AV_Z. is com-
pared to the address values already stored in second level
write merging buffer 330. If address value AV_Z is associated
with any of the address already stored in second level write
merging bufter 330, then data value DV_Z. is merged with the
data store in second level write merging buffer 330. If address
value AV_7 is not associated with any of the address values in
second level write merging buffer 330, the data value is stored
in second level write merging buffer 330.

FIG. 6 is a block diagram of a second level write merging
buffer 600 in accordance with one embodiment of the present
invention. The embodiment of FIG. 6 includes a data buffer
610, a merging control buffer 620, and an increment counter
ICTR__3, which generates an increment signal IS_3 for
merging control buffer 620. Specifically, third increment
counter _CTR__ 3 generates an increment transition on incre-
ment signal IS_ 3 once every increment period INC_PER_ 3.
Data buftfer 610 includes a plurality of data buffer lines for
storing the data values received from first level write combin-
ing queue 320. Each data buffer line has the same width as
level two cache 340. Merging control buffer 620 includes a
plurality of merging control buffer entries (hereinafter) MCB
entries. When data value DV _Z is transferred from first level
write combining queue 320 to second level write merging
buffer 330 and the corresponding address value AV_Z. is not
associated with any addresses already in second level write
merging buffer 330 (specifically in merging control buffer
620), data value DV_Z is stored in an unused data line of data
buffer 610 say for example data line DI._Z. In addition an
unused MCB entry MCB_E_Z7 is associated with data line
DL_Z and stores address value AV_Z as well as various
control parameters as explained below.

FIG. 7 provides details about merging control bufter 620.
Specifically, merging control buffer 620 includes X MCB
entries MCB_E_1,MCB_E 2,MCB_E 3,...MCB_E_X.
MCB entry MCB_E__1 includes a data buffer line identifier
field DBLN_F 1, an address field ADDR_F 1, an age
counter AC__1, a data buffer valid flag DB_VF__1, a data
buffer line perfected flag DBLPF__1, aready flag RF__1, and
a block write flag BWF__1. Similarly, each MCB entry
MCB_E_Y includes a data buffer line identifier field
DBLI_F_Y, an address field ADDR_F_Y, an age counter
AC_Y, aDB valid flag DB_VF_Y, a data buffer line perfected
flag DBLPF_Y, a ready flag RF_Y, and a block write flag
BWF_Y. Data line identifier field DBLI_F_Y stores the data
line identifier value for the data line in data buffer 610 asso-
ciated with MBC entry MBC_E_Y. Address field
ADDR_F_Y isused to store the address value for the data that
is stored in the associated data line in data buffer 610. Data
buffer valid flag DB_VF_Y is used to indicates which data
byte fields in the associated data line of data buffer 610
contain valid data. Specifically, when data is written into a
data buffer line byte DBLB_Y_Z, the corresponding data
buffer valid flag bit DB_VF_Y_Z is set to a valid state.

Age counter AC_Y is used to indicate the age of MCB entry
MCB_E_Y and is used to determine when the data in the
associated data buffer line is data buffer 610 is transferred out
of'second level write merging buffer 600 as described below.
Generally, age counter AC_Y is incremented on every incre-
ment transition on increment signal IS_ 3 from increment
counterI_CTR__3.Furthermore, in some embodiments ofthe
present invention age counter AC_Y is also incremented

US 9,280,479 B1

11

whenever an unused MCB Entry is used to receive incoming
data values and address values into second level write merg-
ing buffer 600. Data buffer line perfected flag indicates
whether every data line data byte in the associated data buffer
line contains valid data. If all data line data bytes of a data
buffer line contains valid data, the data buffer line is said to be
“perfected”. When a data line is perfected the data buffer line
perfected flag of the associated MCB entry is set to a valid
state (typically logic 1). Ready flag RF_Y indicates that the
data in the associated data bufter line is ready to be written out
of second level write merging buffer 330. Various conditions
can cause ready flag RF_Y to be set to a valid state. For
example, if a data buffer line DBL_Y (associated with MCB
entry MCB_E_Y) is perfected then data buffer line DBL_Y is
ready to be written out of second level write merging buffer
600 thus ready flag RF_Y is set to the valid state. Another
condition for setting ready flag RF_Y to the valid state would
be if age counter AC_Y exceeds a MCB age threshold
MCB_T_AGE. In one embodiment of the present invention
both conditions are used independently to set the ready flag.
Block write flag is used to indicate whether the data stored in
data buffer line associated with the MCB entry came from
block write transactions. If the data came from a block write
transaction then the block write flag is set to a valid state (i.e.
logic 1) otherwise the block write flag is set to an invalid state
(i.e. logic 0). The block write flag is used in some embodi-
ments of the present invention to help determine the destina-
tion of data of the MCB entry when leaving merging control
buffer 620 (see below).

FIG. 8 is a flow diagram 800 illustrating the operation of
second level write merging buffer 600 when receiving a data
transfer from a first level write combining queue. In the
embodiment of FIG. 8 second level write merging buffer 600
is used for data that is not already cached in level two cache
340. Data that is cached in level two cache 340 is stored
directly into level two cache 340 and does not enter second
level write merging buffer 330. FIG. 9 illustrates the opera-
tion of second level write merging buffer 600 when writing
data out of second level write merging buffer 600. As shown
in FIG. 8, second level write merging buffer 600 waits for a
data transfer in WAIT FOR DATA TRANSFER 810. When a
data transfer is received, second level write merging buffer
600 aligns the data transfer in ALIGN DATA TRANSFER
815. For the description of FIG. 8, second level write merging
buffer 600 receives data value DV_X, address value AV_X,
and WCQ valid flag WCQ_VF_X.

Generally, the data width of the first level write combining
queues are smaller than the data width of the second level
write merging buffer. For example, in one embodiment of the
present invention, the first level write combining queue is 16
bytes wide and the second level write merging buffer is 64
bytes wide. The 16 bytes of data from the first level write
combining queue could be meant for the first 16 bytes, the
second sixteen bytes, the third 16 bytes or the fourth 16 bytes
of the second level write merging buffer. Thus, in ALIGN
DATA TRANSFER 815, the incoming data bytes are aligned
to the proper data bytes of the write second level write merg-
ing buffer. Similarly, the WCQ valid flag must be aligned with
the DB valid flag in merging control buffer 620.

Then, in CHECK FOR ASSOCIATED ADDRESS 820,
second level write merging buffer 600 checks to determine
whether address value AV_X is associated with any of the
address values already contained in second level write merg-
ing buffer 600. More specifically, the address values are
stored in address fields of the MCB entries. For second level
write merging buffer 600, an address value is associated with
another address value if both address values would map to the

10

15

20

25

30

35

40

45

50

55

60

65

12

same level two cache line. If address value AV_X is not
associated with any of the address values in second level write
merging buffer 600 then second level write merging buffer
600 allocates a data buffer line in ALLOCATE DATA
BUFFER LINE 825 and associates a MCB entry to the data
line by storing the data buffer line identifier for the allocated
data line into the data buffer line identifier field of the allo-
cated MCB entry. Second level write merging buffer 600,
then stores the valid bytes of data value DV_X into the allo-
cated data buffer line, stores address value AV_X into the
address field of the allocated MCB entry, and storing WCQ
valid flag WCQ_VF_X into the data buffer valid flag of the
allocated MCB entry in STORE DATA TRANSFER 835.
Because an unused data buffer line and unused MCQ entry
was allocated, second level write merging buffer 600 causes
the age counter in all valid MCQ entries to increment in
INCREMENT AGE COUNTER 840. Then, second level
write merging buffer 600 returns to WAIT FOR DATA
TRANSFER 810 until the next data transfer arrives.

Ifin CHECK FOR ASSOCIATED ADDRESS 820, second
level write merging buffer 600 found that address value AV_X
is associated with an address in a MCQ entry MCQ_E_Z,
then second level write merging buffer 600 merges the valid
bytes of data value DV_X into the data buffer line associated
with MCQ entry MCQ_E_Z and merges WCQ valid flag
WCQ_VF_X into data buffer valid flag DB_VF_Z of MCQ
entry MCQ_E_Z in MERGE DATA TRANSFER 850. Sec-
ond level write merging buffer 600 then checks whether the
data buffer line associated with MCQ entry MCQ_E_Z has
been perfected (i.e. all data bytes contain valid data) in
CHECK DATA LINE PERFECTION 855. If the data buffer
line associated with MCQ entry MCQ_E_Z has been per-
fected then second level write merging buffer 600 sets ready
flag RF_Z of MCQ entry MCQ_E_Z indicating that the data
in the associated data buffer line of MCQ entry MCQ_M_Zis
ready to leave second level write merging buffer 600. Second
level write merging buffer 600 then returns to WAIT FOR
DATA TRANSFER 810 until the next data transfer arrives.

FIG. 9 is a flow diagram 900 illustrating the operation of
second level write merging bufter 600 when transtferring data
out of second level write merging buffer 600. As shown in
FIG. 9, second level write merging buffer 600 monitors the
ready flags of the valid MCB entries of merging control buffer
620 in MONITOR READY FLAGS 910. When second level
write merging buffer 600 detects a ready flag RF_X in a valid
state, second level write merging buffer 600 checks the status
of'the data bufter line associated with MCB entry MCB_E_X
(which contains ready flag RF_X) in CHECK DATA LINE
STATUS 915. Specifically, second level write merging buffer
600 determines whether the data buffer line associated with
MCB entry MCB_E_X has been perfected (i.e. whether all
data bytes are valid). Perfection of the associated data buffer
line is indicated by data buffer line perfection flag DBLPF_X.

If the data buffer line associated with MCB entry
MCB_E_X is not perfected, then second level write merging
buffer 600 writes the data from the data buffer line associated
with MCB entry MCB_E_X to the level two cache (See FIG.
3) in WRITE DATA TO LEVEL TWO CACHE 917. Then,
second level write merging buffer 600 releases the data buffer
line in RELEASE DATA BUFFER LINE 920. Similarly,
second level write merging buffer 600 releases MCB entry
MCB_E_X in release MCB ENTRY 925. After releasing the
MCB entry and the data line, second level write merging
buffer 600 returns to MONITOR READY FLAGS 910.

If in CHECK DATA LINE STATUS 915, the data buffer
line associated with MCB entry MCB_E_X was perfected,
second level write merging buffer 600 determines the type of

US 9,280,479 B1

13

store transaction that was used to perfect the data bus line in
DETERMINE STORE TRANSACTION TYPE 930. If the
store transactions that perfected the data buffer line associ-
ated with MCB entry MCB_E_X were multiple sub-block
writes that were merged, then second level write merging
buffer 600 writes the data from the data buffer line associated
with MCB entry MCB_E_X to the level three cache (See F1G.
3) in WRITE DATA TO LEVEL three CACHE 935. Then,
second level write merging buffer 600 releases the data buffer
line in RELEASE DATA BUFFER LINE 920. Similarly,
second level write merging buffer 600 releases MCB entry
MCB_E_X in release MCB ENTRY 925. After releasing the
MCB entry and the data line, second level write merging
buffer 600 returns to MONITOR READY FLAGS 910.

If the store transactions that perfected the data buffer line
associated with MCB entry MCB_E_X came from block
write transactions as indicated by a valid state in block write
flag BWF_X, then second level write merging buffer 600
writes the data from the data buffer line associated with MCB
entry MCB_E_X to the level four memory sub-system (See
FIG. 3) in WRITE DATA TO LEVEL FOUR MEMORY
SUB-SYSTEM 940. Then, second level write merging buffer
600 releases the data buffer line in RELEASE DATA
BUFFER LINE 920. Similarly, second level write merging
buffer 600 releases MCB entry MCB_E_X in release MCB
ENTRY 925. After releasing the MCB entry and the data line,
second level write merging buffer 600 returns to MONITOR
READY FLAGS 910.

In the various embodiments of the present invention, novel
methods and systems have been described for minimizing
data transfers between levels of a multi-level memory hierar-
chy. By using a first level write combining queue and a second
level write merging buffer, the number of data transfers
between various levels of caches are greatly reduced. The
various embodiments of the structures and methods of this
invention that are described above are illustrative only of the
principles of this invention and are not intended to limit the
scope of the invention to the particular embodiments
described. For example, in view of this disclosure those
skilled in the art can define other memory hierarchies, write
combining queues, write merging buffers, caches, memory
sub-systems, age counters, valid flags, non-combining flags,
increment counters, and so forth, and use these alternative
features to create a method, or system according to the prin-
ciples of this invention. Thus, the invention is limited only by
the following claims.

What is claimed is:

1. A memory system for receiving and providing data to a
load store unit, the memory system comprising:

a first level data cache coupled to the load store unit;

a first level write combining queue for the first level data

cache coupled to the first level data cache;

a second level write merging buffer coupled to the first
level write combining queue;

a second level data cache coupled to the first level data
cache, the first level write combining queue, and the
second level write merging buffer; and

athird level memory unit coupled between the second level
write merging buffer and the second level data cache, the
third level memory unit comprises a third level data
cache and a forth level memory unit, wherein

the memory system determines a destination for data in the
second level write merging buffer based on a transaction
type of a first write command and a flag entry of the
second level write merging buffer that indicates whether
each data byte of the second level write merging buffer
comprises valid data, wherein

15

20

25

30

35

40

45

50

55

60

65

14

the destination is the level two data cache when at least one
data byte of the second level write merging buffer com-
prises invalid data,

the destination is the third level data cache when each data

byte of the second level write merging buffer comprises
valid data and the first write command is not a block
write command, and

the destination is the forth level memory unit when each

data byte of the second level write merging buffer com-
prises valid data and the first write command is a block
write command.

2. The memory system of claim 1, wherein the first level
write combining queue is configured to combine multiple
store transactions from the load store unit to associated
addresses.

3. The memory system of claim 2, wherein a first address is
associated with a second address when the first address and
the second address comprise a matching physical address.

4. The memory system of claim 2, wherein a first address is
associated with a second address when the first address and
the second address are within a cache line.

5. The memory system of claim 2, wherein a first address is
associated with a second address when the first address and
the second address are within a continuous subset of a cache
line.

6. The memory system of claim 1, wherein the second level
write merging buffer is configured to combine data from the
first level write combining queue and to write the data com-
bined from the first level write combining queue into the
second level data cache.

7. The memory system of claim 1, wherein the second level
write merging buffer is configured to combine data from the
first level write combining queue and to write the data com-
bined from the first level write combining queue into the third
level memory unit.

8. The memory system of claim 1, wherein the second level
write merging buffer is configured to combine data from the
first level write combining queue and to write the data com-
bined from the first level write combining queue into the
fourth level memory unit.

9. The memory system of claim 1, wherein the first level
write combining queue comprises a plurality of write com-
bining queue entries, wherein each write-combining-queue
entry further comprises:

an address field; and

a plurality of data bytes forming a data field comprising a

particular data width.

10. The memory system of claim 9,

wherein the first level write combining queue is configured

to store a first address and a first set of data from a first
store transaction in a first write combining queue entry;
and

wherein the first level write combining queue is configured

to combine a second set of data from a second store
transaction with the first set of data in the first write
combining queue entry when a second address in the
second write command is associated with the first
address.

11. The memory system of claim 9, wherein each write
combining queue entry further comprises a non-combinable
flag.

12. The memory system of claim 11, wherein the first level
write combining queue further comprises a first increment
signal and wherein each write combining queue entry further
comprises an age counter.

US 9,280,479 B1

15

13. The memory system of claim 12, wherein each age
counter of each valid write combining queue entry is incre-
mented by the first increment signal.

14. The memory system of claim 13, wherein the first level
write combining queue further comprises a second increment
signal and wherein the age counter of an oldest valid write
combining queue entry is also incremented by the second
increment signal.

15. The memory system of claim 9, wherein the first level
write combining queue is configured to send data from an
oldest valid write combining queue entry to the second level
write merging buffer and to send an address from the oldest
valid write-combining queue entry to the second level write
merging buffer.

16. The memory system of claim 1, wherein the second
level write merging buffer comprises:

adata buffer comprising a plurality of data buffer lines; and

amerging control buffer comprising a plurality of merging

control buffer entries.

17. The memory system of claim 16, the second level write
merging bufter is configured to combine a set of data from the
first level write combining queue.

18. The memory system of claim 16, wherein each merging
control buffer entry further comprises:

a data buffer line identifier field;

an address field,

a data buffer valid flag; and

a ready flag.

19. The memory system of claim 18, wherein the second
level write merging buffer is configured to store a first set of
data comprising a first address from the first level write com-
bining queue in a first data buffer line and to store the first
address in an address field of a first merging control buffer
entry; and

wherein the second level write merging buffer is config-

ured to combine a second set of data comprising a sec-
ond address in the first data buffer line when the second
address is associated with the first address.

20. The memory system of claim 19, wherein the second
address is associated with the first address, when the first
address and the second address are within a cache line of the
second level data cache.

21. The memory system of claim 19, wherein the second
level write merging buffer is configured to store a data buffer
line identifier identifying the first data buffer line stored in the
data buffer identifier field of the first merging control buffer
entry; and

5

25

40

45

16

wherein the second level write merging buffer is config-
ured to write a valid state in the data buffer valid flag of
the first merging control buffer entry when the first set of
data is stored in the first data buffer line.

22. The memory system of claim 21, wherein each merging
control buffer entry further comprises a data buffer line per-
fected flag; and

wherein the data buffer line perfected flag in the first merg-
ing control buffer entry is set to a valid state when the
first data bufter line is perfected.

23. The memory system of claim 21, wherein each merging

control buffer entry further comprises a block write flag; and
wherein the block write flag in the first merging control
buffer entry is set to a valid state when the first set of data

is generated based on a write command.

24. An apparatus, comprising:

a first level data cache coupled to the load store unit; a first
level write combining queue coupled to the first level
data cache; a second level write merging buffer coupled
to the first level write combining queue;

a second level data cache coupled to the first level data
cache, the first level write combining queue, and the
second level write merging buffer; and

athird level memory unit coupled between the second level
write merging buffer and the second level data cache, the
third level memory unit comprises a third level data
cache and a forth level memory unit, wherein

the memory system determines a destination for data in the
second level write merging buffer based on a transaction
type of a first write command and a flag entry of the
second level write merging buffer that indicates whether
each data byte of the second level write merging buffer
comprises valid data, wherein

the destination is the level two data cache when at least one
data byte of the second level write merging buffer com-
prises invalid data,

the destination is the third level data cache when each data
byte of the second level write merging buffer comprises
valid data and the first write command is not a block
write command, and

the destination is the forth level memory unit when each
data byte of the second level write merging buffer com-
prises valid data and the first write command is a block
write command.

